Lighting control protocol
Overall update

- DMX512 – first boards are being manufactured, documentation being compiled
- Dali – Implementation in progress on C2000 and MSP430 (no availability date)
- 2.4GHZ wireless – EZ RF demo with TPS62260
- PLC – BPSK demo code and HW available (HW refresh shortly)
- Looking at: LonStack, KNX(-RF), W-DMX…
Dali
Dali lighting schematic
DALI bus system
Dali specifics

• Uses TPS62260, MSP430
• Example code on MSP430 available
• Example HW implementation available:
 – Schematics
 – Gerbers
 – Board availability:
 • TPS62260-EVM338 in stock
 • Dali Phy?
Overview

DALI Controller

PHY

PHY
DALI Controller

- OSRAM DALI MuLTI 3
 - Switch contact input
 - On/Off switch
 - Press and hold for ramp
 - Lighting Regulation
 - DALI Controller
 - Broadcast messaging
 - Direct Arc Level Controls
DALI and MSP430 interface
MSP430 microcontroller
DALI Slave Unit
Dali system prototype

OSRAM DALI controller

TPS62260 EVM with MSP2131

DALI PHY for MSP430
DALI message Format

DALI Master Message

DALI Slave Message
Table A-1. Standard Commands

<table>
<thead>
<tr>
<th>Command Value</th>
<th>Description</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Extinguish the lamp without fading</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>DIm up 200 ms using the selected fade rate</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>DIm down 200 ms using the selected fade rate</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Set the actual arc power level one step higher without fading</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Set the actual arc power level one step lower without fading</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Set the actual arc power level to the maximum value</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Set the actual arc power level to the minimum value</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Set the actual arc power level one step lower without fading</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Set the actual arc power level one step higher without fading</td>
<td></td>
</tr>
<tr>
<td>10-80scene</td>
<td>Set the light level to the value stored for the selected scene</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Reset the parameters to default settings</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Store the current light level in the DTR</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Store the value in the DTR as the maximum level</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Store the value in the DTR as the minimum level</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Store the value in the DTR as the system failure level</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Store the value in the DTR as the power on level</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Store the value in the DTR as the fade time</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Store the value in the DTR as the fade rate</td>
<td></td>
</tr>
<tr>
<td>40+8scene</td>
<td>Store the value in the DTR as the selected scene</td>
<td></td>
</tr>
<tr>
<td>50+8scene</td>
<td>Remove the selected scene from the slave unit</td>
<td></td>
</tr>
<tr>
<td>60+8group</td>
<td>Add the slave unit to the selected group</td>
<td></td>
</tr>
<tr>
<td>70+8group</td>
<td>Remove the slave unit from the selected group</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Store the value in the DTR as a short address</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Returns the status of the slave as XX</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Check if the slave is working</td>
<td>YES/NO</td>
</tr>
<tr>
<td>92</td>
<td>Check if there is a lamp failure</td>
<td>YES/NO</td>
</tr>
<tr>
<td>93</td>
<td>Check if the lamp is operating</td>
<td>YES/NO</td>
</tr>
<tr>
<td>94</td>
<td>Check if the slave has received a level out of limit</td>
<td></td>
</tr>
</tbody>
</table>
DALI special commands

<table>
<thead>
<tr>
<th>Special Command Value</th>
<th>Description</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 00</td>
<td>All special mode processes shall be terminated</td>
<td>–</td>
</tr>
<tr>
<td>A3 XX</td>
<td>Store value XX in the DTR</td>
<td>–</td>
</tr>
<tr>
<td>A5 XX</td>
<td>Initialize addressing commands for slaves with address XX</td>
<td>–</td>
</tr>
<tr>
<td>A7 00</td>
<td>Generate a new random address</td>
<td>–</td>
</tr>
<tr>
<td>A9 00</td>
<td>Compare the random address with the search address</td>
<td>–</td>
</tr>
<tr>
<td>AB 00</td>
<td>Withdraw from the compare process</td>
<td>–</td>
</tr>
<tr>
<td>B1 HH</td>
<td>Store value HH as the high bits of the search address</td>
<td>–</td>
</tr>
<tr>
<td>B3 MM</td>
<td>Store value MM as the middle bits of the search address</td>
<td>–</td>
</tr>
<tr>
<td>B5 LL</td>
<td>Store value LL as the lower bits of the search address</td>
<td>–</td>
</tr>
<tr>
<td>B7 XX</td>
<td>Program the selected slave with short address XX</td>
<td>–</td>
</tr>
<tr>
<td>B9 XX</td>
<td>Check if the selected slave has short address XX</td>
<td>YES/NO</td>
</tr>
<tr>
<td>BB 00</td>
<td>The selected slave returns its short address XX</td>
<td>XX</td>
</tr>
<tr>
<td>ED 00</td>
<td>Go into physical selection mode</td>
<td>–</td>
</tr>
</tbody>
</table>
2.4GHz proprietary
SimpliciTI 2.4GHz specifics

- Uses TPS62260, MSP430 and CC2500
- Based on point to point implementation (star network possible)
- Example code on MSP430 and CC2500 available:
 - Point to point
 - Send index information corresponding to a pre-recorded R/G/B dimming value
- Example HW implementation available:
 - Schematics
 - Gerbers
 - Board availability: in stock
SimpliciTI network

- Low Power: a TI proprietary low-power RF network protocol
- Low Cost: uses < 8K FLASH, 1K RAM depending on configuration
- Flexible: simple star w/ extendor and/or p2p communication
- Simple: Utilizes a very basic core API
- Versatile: MSP430+CC110x/2500, CC1110/2510, CC1111/CC2511, CC2430, CC2520
- Low Power: Supports sleeping devices
TPS62260&CC2500 - 2.4GHz
MSP430 Schematic

JTAG Connector

eZ430-RF Connector
TPS62260 Schematic

3x TPS62260
In 300mA Constant Current Source Configuration

3.3V Regulator
EZ430 - RF2500

- Star network stack included
- Includes 2 RF targets & battery expansion board
Product portfolio today
Remote control implementation

- **USITT DMX512-A** is an Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories used almost in all professional light equipment.

- It is designed to carry repetitive control data from a single controller to one or more receivers up to 300m - 455m (1km theoretical maximum).

- Fast data transmission at a typical bit rate of 250 kbit/s, into packets of up to 513 bytes. This enables a refresh rate of 44Hz for a 513-bytes packet.

- Support for up to 512 channels. Up to 32 devices can be connected on a serial data link in a daisy chain scheme.
Data Link Topology

Single active differential line driver

DMX out: XLR female 3-pin connector

DMX in: XLR male 3-pin connector

DMX controlled Device #1

DMX controlled Device #n

Differential line receivers

Line termination
State Machine Execution Time

one DMX byte (0x00) with 2 stop bits

DMX Signal

Cycle for setting the PWM - Longest execution time

State machine execution time
USCI Module Clock Timing

Graph showing 250kBits/sec data rate with a bit time indication in the serial data stream.
DMX512 specifics

• Example code on MSP430 available free of charge (no royalty, no certification required)

• Example HW implementation available:
 – Schematic
 – Gerber
 – Board availability : short supply for now (hand made)
Implementation

Pin 1, 2, 3: +12V
Pin 4, 5, 6: GND
Pin 7: -DMX
Pin 8: +DMX
RF2500T Connector
Male Connector
XLR-DMX512 Connector
Daughter card
RGB-DMX512 Prototype
Female Connector
12V DC Connector
Implementation

- Daisy-Chain Possibility for RGB-DMX512 Prototypes
- RGB-DMX512 Prototype
- XLR-DMX512 Connector Daughter card
DMX512 BOM

- DC/DC CC per LED or LED string (3x TPS62110)
- Shunt voltage reference (3x TL431)
- Commergy AC Adapter Power Supply TBD
- 5V / 3.3V LDO (TPS71550)
- RS485 (SN65HVD3082E)
- DMX512 converter to 3xPWM (MSP430F2274)
Execution time of overflow ISR
Schematics
Schematics
Upcoming development tools

• Same principle as Dali and CC2500

• Using TPS62260/MSP430F2131+PHY board (RS485)
Narrow Band PLC modem solution on TI MCU
Qualify the PLC modem opportunity

• Bit rate targeted? → We focus here on narrow band solution (kilo bits per second).

• Which frequency band will your PLC application use (A, B, C, D, FCC..)

• Which modulation will you use (BPSK, SFSK, OFDM, OTDM, open to any) What is the application that you are developing? (metering, street lighting, home automation, solar..)

• Do you need to comply to any standards? (PLAN, PRIME, Home Plug

• Are you OK with a black box solution for PLC modem

• Do you wish to integrate the application on the same device as well?
Agenda

• Power Line Communication definition
• Targeted application
• Implementation the 32-bit F28x MCU
• Software solution roadmap
• Incoming tools
PLC modem applications
What is power line communication?

- Communication without any additional cables, wires or radio links!
- The ‘mains’ i.e. the power-line is used as the communication media.
PLC Modem modulation

Power line communication
- Wired technology
- Use of the electricity networks for data transmission

Indoor
- After the residential counter
- Reserved for in-house communication and maintenance (mid-speed) or internet access within the building

Outdoor
- Last mile access (from transformer to the house)
- Requires the authorization of energy supplier
Frequency bands for PLC in Europe
- defined by the CENELEC:
 - The range of 3 kHz – 9 kHz and band A are exclusively for energy providers.
 - Bands B, C, D are open for end-user applications.
 - Bands A, B and D are protocol free
 - Band C is regulated – CSMA access

Frequency bands for PLC in USA
- Single wide band – from 150 to 450 kHz
- No access protocol
- FFC band 10kHz – 490kHz

Frequency bands for PLC in Japan
- ARIB band 10kHz – 450kHz
32-bit MCU focuses on narrowband

- **Low Speed (bps)**
 - TurtleTech/TWACS
 - <10 Hz modulation, freq division multiplexing, ~3bits/hour data rate.
 - Utility automatic meter reading. Very long reach.
 - X-10
 - Modulate at 120 kHz for 1 msec at 60 Hz zero-cross
 - Aimed at home automation, 120 b/sec.
 - Universal Power-Line Bus (UPB)
 - Pulse position modulation on each half sine wave
 - Aimed at home automation, 240 b/sec

- **Mid Speed (kbps)**
 - FSK (ST7537/ST7538)
 - Konnex (KNX)
 - SFSK
 - ITRAN 800 (CENELEC)
 - CEA-709.2 (Echelon/LonWorks)
 - EIA-600 (CEBus/Intellon)
 - ITRAN 800 (US FCC)
 - OFDM (IEC 61000-3)

- **High Speed (Mbps)**
 - Home Plug
 - Broadband over power lines, 1.8 Mb/s
 - OFDM modulation. Subcarrier frequencies from 4.5 to 20.7 MHz
 - DS2

Addressable by TI F28x™ 32-bit MCU

Software flexible solution

Targeted Application:
- Home automation
- Smart appliance
- Control Systems
- Electricity meter
- Lighting
- Solar
- Drives
PLC Narrowband applications

In-house communication
• Smart home appliances: monitoring, energy management,…

Outdoor
• Urban facilities:
 – Lighting/streetlighting and ballast system
 – Traffic light
 – Industrial: solar field, drives.
• Automatic Meter Management (AMM):
 – Automatic Meter Read
 – Advanced features: Provider can turn-on/off electricity supply / monitoring, prepaid metering without smart cards
TI offers a complete solution
F28x™ 32-bit MCU PLC solution

• Ready and flexible for future standards:
 – Resources left for evolving, more demanding modulation schemes.
 – New code = new standard with the same hardware!

• Additional functions can be implemented in same processor:
 – PFC, solar, lighting, power monitoring, inverters, motor control,…
TMS320F28x™ 32-bit MCU

• Single chip programmable and flexible solution that supports:
 – PHY layer
 – MAC layer
 – Application layers
 – Security (Data: encryption, IP: flash protection)
 – Same H/W platform for low-cost S-FSK to OFDM migration path

• Flexible software programmable solution:
 – Multi protocol support
 – Field update options
 – Support standards evolution

• Easy interfacing with Metrology and wireless bus
Electricity meter example
Entire PLC/Ballast system uses just 3 ICs: DSP, line driver and low noise amplifier!
Lighting example
End-to-end system description

Control

WWW

Concentrator

AC 85-265 V

AC/DC & PFC
PLC

Isolation

Multi-String LED Drivers

Lighting Control

GPRS
WLAN
ETH
MCU
PLC
TMS320F28x™ 32-bit MCU key benefits

PERFORMANCE
- up to 150 MHz CPU
- new HW Control Law Accelerator on Piccolo
 - 120 MIPS equivalent performance
 - OFDM reduced power consumption (400mW)
- Data security flexibility
- Multi-protocol support

FLEXIBILITY
- SW compatibility across all F280xx
 - Easy migration across device family
 - Leverage investments
- Interoperability via SW

INTEGRATION
- 12-bit ratio-metric ADC with individual channel triggers
 - More accurate resolution - limit drift errors
- 3 Analog comparators with 10-bit reference
 - Zero crossing detection/synchronization
- Dual On-chip oscillators
 - Intelligent clocking system monitoring
- On-chip Flash up to 512kB

COST OPTIMIZATION
- Single 3.3V supply available in the family
 - Cost and board space saving
 - Save 1.8V power and SVS
- Multiple package options down to 32-pin
 - Board space saving

Piccolo device block diagram example
OPA564 – line driver 1.5A, 26V, 17MHz

Features
- Single or Dual Supply: \(\pm3.5V(7V) \) to \(\pm13V(26V) \)
- Large Output Swing: \(22Vpp \) at \(1.5A \) (24V supply)
- Thermal and over-current warning
- Adjustable current limit
- Output Enable/Disable Control
- \(20V/\mu s \) slew rate

Benefits
- Enables design flexibility
- Desirable for demanding applications
- Protects in over-temp and over-current conditions
- Provides accurate, user selected, current limit
- Saves power and protects the load
- Allows 230kHz full-power bandwidth and excellent linearity
PGA112 – RRIO, Single Ended, 2ch mux

Features
• Zero Drift and RRIO
• Binary gain : 1, 2, 4, 8, 16, 32, 64, 128
• 4 internal calibration channels
• Software shutdown (Iq < 4μA)
• AVDD and DVDD supply in 2.2V to 5.5V range
• VCLAMP pin to clamp output
• Low noise, low Ib, low offset, low Iq
• Extended -40°C to +125°C
• 10-MSOP Package w/ SPI interface

Benefits
• Best for low offset, RRIO, wide BW, single supply apps
• Allows for optimum A/D range matching for a wide variety of input signal amplitudes
• Allows easy system calibration for gain and offset
• Ideal for power sensitive applications
• Perfect for mixed voltage systems

Texas Instruments
TI PLC solution roadmap

Solution Status
- Production
- On Development
- Future

Development vectors

Lab demo PLC code
- Open project
- 1.2kps FSK (F2808)
- 5.44kps BPSK (F2812)
- PHY Layer, minimal MAC
- A Band

PLC Production Code
- Up to 76.8kbps OFDM PHY
- Integrated MAC layer
- Compatible with EN 500065, IEC 61000-3

Future

2008
- Cenelec A band SFSK/OFDM – F2808 – June 09
- A and B band F2808 SFSK/OFDM – September 09

2Q09
- Piccolo migration – 4Q09

4Q09
- Cenelec A band SFSK/OFDM – F2808 – June 09
- A and B band F2808 SFSK/OFDM – September 09
- Piccolo migration – 4Q09

2010
- Cenelec A band SFSK/OFDM – F2808 – June 09
- A and B band F2808 SFSK/OFDM – September 09
- Piccolo migration – 4Q09

PLC Production Code
- PRIME
- OFDM/SFSK
- Minimum Application layer available

Industrial PLC

PLC Production Code
- Open project
- Multi modulation, Multi band
- OFDM, FSK, DCSK, others
- API Packages for PHY Layer
- Enables application layer development
- Optimized AFE and board
- Full F28x product family support

Texas Instruments
PLC Modem development Kit (PLC-DK) – comes with
- 2 Modem s
- 2 PLC System On Module
- Cables (USB and power)
- GUI and documentations
- Plastic cover box
- Part # TMDSPLCKITV1
- SRP $450
- Available end of June

PLC System On Module (SoM)
- TMS320F280x 32-bit Micro-controller based
- I2C, SPI, SCI ports available for Host controller
- Gerber and Schematics available

- Robust Narrowband communication over low-voltage power line
- OFDM and S-FSK
- Data rates up to 76.8 kbps for one phase
- Phase selection provided
- Encapsulated libraries solution with interface to host controller (I2C, SPI, SCI)
- Compatible to standards EN50065 (Cenelec), IEC 61000-3
- Operating frequency range 24-94.5kHz (Cenelec A band)
- B band support under development
- Easy integration into end-point or network devices of AMR/AMI systems
- Easy integration in industrial application (lighting, solar..)
- NRE and Royalties FREE
TI PLC development path

Prototype Phase

- **Experience and demo on the PLC-DK**
- **Interface with application**
 - Interfaces available for host controller using serial port (I2C, SPI, SCI)
- **Integrate into the final application**
 - Option 1: Plug PLC SoM in application (interface definition provided)
 - Option 2: Merge SoM in application (schematic and Gerger File Available)